The Investigation of the Transient Regimes in the Nonlinear Systems by the Generalized Classical Method

نویسندگان

  • T. ABBASOV
  • A. R. BAHADIR
چکیده

This paper presents the use of the generalized classical method (GCM) for solving linear and nonlinear differential equations. This method is based on the differential transformation (DT) technique. In the GCM, the solution of the nonlinear transient regimes in the physical processes can be written as a functional series with unknown coefficients. The series can be chosen to satisfy the initial and boundary conditions which represent the properties of the physical process. The unknown coefficients of the series are determined from the differential transformation of the nonlinear differential equation of the system. Therefore, the approximate solution of the nonlinear differential equation can be obtained as a closed-form series. The validity and efficiency of the GCM is shown using some transient regime problems in the electromechanics processes. The numerical results obtained by the present method are compared with the analytical solutions of the equations. It is shown that the results are found to be in good agreement with each other.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Rapidly Convergent Nonlinear Transfinite Element Procedure for Transient Thermoelastic Analysis of Temperature-Dependent Functionally Graded Cylinders

In the present paper, the nonlinear transfinite element procedure recently published by the author is improved by introducing an enhanced convergence criterion to significantly reduce the computational run-times. It is known that transformation techniques have been developed mainly for linear systems, only. Due to using a huge number of time steps, employing the conventional time integration me...

متن کامل

Power System Transient Stability Analysis Based on the Development and Evaluation Methods

A novel method to compute the stability region in power system transient stability analysis is presented. This method is based on the set analysis. The key to this method is to construct the Hamilton-Jacobi-Isaacs (HJI) partial differential equation (PDE) of a nonlinear system, using which we can compute the backward reachable set by applying the level set methods. The backward reachable set of...

متن کامل

Dynamics Analysis of the Steady and Transient States of a Nonlinear Piezoelectric Beam by a Finite Element Method

This paper presents a finite element formulation for the dynamics analysis of the steady and transient states of a nonlinear piezoelectric beam. A piezoelectric beam with damping is studied under harmonic excitation. A numerical method is used for this analysis. In the paper, the central difference formula of four order is used and compared with the central difference formula of two order in th...

متن کامل

Modified Multi-level Residue Harmonic Balance Method for Solving Nonlinear Vibration Problem of Beam Resting on Nonlinear Elastic Foundation

Nonlinear vibration behavior of beam is an important issue of structural engineering. In this study, a mathematical modeling of a forced nonlinear vibration of Euler-Bernoulli beam resting on nonlinear elastic foundation is presented. The nonlinear vibration behavior of the beam is investigated by using a modified multi-level residue harmonic balance method. The main advantage of the method is ...

متن کامل

Semi-classical Noise Treatment of Generated Supercontinuum Light by a Finite Energy Airy Pulse

In this paper, a stochastic term is added to the classical generalized nonlinear Schrödinger Equation to describe the noise generated when light pulses propagate in a fiber. It has been shown that the generated supercontinuum light source fluctuates up to 50% of its output temporal intensity profile due to noises of different sources. The simulation method devised has been applied to the propag...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005